Identities for generalized Euler polynomials
نویسندگان
چکیده
منابع مشابه
Symmetric Identities for Euler Polynomials
In this paper we establish two symmetric identities on sums of products of Euler polynomials.
متن کاملIdentities of Symmetry for q-Euler Polynomials
In this paper, we derive eight basic identities of symmetry in three variables related to q-Euler polynomials and the q -analogue of alternating power sums. These and most of their corollaries are new, since there have been results only about identities of symmetry in two variables. These abundance of symmetries shed new light even on the existing identities so as to yield some further interest...
متن کاملSome symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials
In 2008, Liu and Wang established various symmetric identities for Bernoulli, Euler and Genocchi polynomials. In this paper, we extend these identities in a unified and generalized form to families of Hermite-Bernoulli, Euler and Genocchi polynomials. The procedure followed is that of generating functions. Some relevant connections of the general theory developed here with the results obtained ...
متن کاملArith . IDENTITIES CONCERNING BERNOULLI AND EULER POLYNOMIALS
We establish two general identities for Bernoulli and Euler polynomials, which are of a new type and have many consequences. The most striking result in this paper is as follows: If n is a positive integer, r + s + t = n and x + y + z = 1, then we have r s t x y n + s t r y z n + t r s z x n = 0 where s t x y n := n k=0 (−1) k s k t n − k B n−k (x)B k (y). It is interesting to compare this with...
متن کاملOn Identities Involving Bernoulli and Euler Polynomials
A class of identities satisfied by both Bernoulli and Euler polynomials is established. Recurrence relations for Bernoulli and Euler numbers are derived.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Integral Transforms and Special Functions
سال: 2014
ISSN: 1065-2469,1476-8291
DOI: 10.1080/10652469.2014.918613