Identities for generalized Euler polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Identities for Euler Polynomials

In this paper we establish two symmetric identities on sums of products of Euler polynomials.

متن کامل

Identities of Symmetry for q-Euler Polynomials

In this paper, we derive eight basic identities of symmetry in three variables related to q-Euler polynomials and the q -analogue of alternating power sums. These and most of their corollaries are new, since there have been results only about identities of symmetry in two variables. These abundance of symmetries shed new light even on the existing identities so as to yield some further interest...

متن کامل

Some symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials

In 2008, Liu and Wang established various symmetric identities for Bernoulli, Euler and Genocchi polynomials. In this paper, we extend these identities in a unified and generalized form to families of Hermite-Bernoulli, Euler and Genocchi polynomials. The procedure followed is that of generating functions. Some relevant connections of the general theory developed here with the results obtained ...

متن کامل

Arith . IDENTITIES CONCERNING BERNOULLI AND EULER POLYNOMIALS

We establish two general identities for Bernoulli and Euler polynomials, which are of a new type and have many consequences. The most striking result in this paper is as follows: If n is a positive integer, r + s + t = n and x + y + z = 1, then we have r s t x y n + s t r y z n + t r s z x n = 0 where s t x y n := n k=0 (−1) k s k t n − k B n−k (x)B k (y). It is interesting to compare this with...

متن کامل

On Identities Involving Bernoulli and Euler Polynomials

A class of identities satisfied by both Bernoulli and Euler polynomials is established. Recurrence relations for Bernoulli and Euler numbers are derived.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Integral Transforms and Special Functions

سال: 2014

ISSN: 1065-2469,1476-8291

DOI: 10.1080/10652469.2014.918613